Déchiffrer un article scientifique

Culture scientifique en L3 Institut Villebon-Charpak, Julien Bobroff

trouver l'article

Taper la reference dans scholar.google.fr :

≡	Google Scholar	Aeppli 2024 PRL				
•	Articles	Environ 183 résultats (0,07 s)				
	Date indifférente Depuis 2024 Depuis 2023 Depuis 2020 Période spécifique	Clock with 8×10^{-19} Systematic Uncertainty <u>A Aeppli</u> , <u>K Kim</u> , W Warfield, <u>MS Safronova</u> , <u>J Ye</u> - Physical Review Letters , 2024 - APS We report an optical lattice clock with a total systematic uncertainty of 8.1 × 10 - 19 in fractional frequency units, representing the lowest uncertainty of any clock to date. The clock relies $rac{1}{2}$ Enregistrer \mathfrak{M} Citer Cité 7 fois Autres articles	[PDF] mariannasafronova.com Accès Univ Paris-Saclay			
	Trier par pertinence Trier par date	A clock with 8×10^{-19} systematic uncertainty A Aeppli, <u>K Kim</u> , W Warfield, <u>MS Safronova</u> arXiv preprint arXiv, 2024 - arxiv.org We report an optical lattice clock with a total systematic uncertainty of \$8.1 \times 10^{-19}	[PDF] arxiv.org			
Tout Recl pag	Toutes les langues Recherche dans les pages en Français	in fractional frequency units, representing the lowest uncertainty of any clock to date. The ☆ Enregistrer ⑰ Citer Autres articles Les 2 versions ≫				
	Tous les types Articles de revue	Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens (R) <u>L Martinelli, K Wohlfeld, J Pelliciari, R Arpaia</u> Physical Review Letters, 2024 - APS We have investigated the 3 d orbital excitations in CaCuO 2 (CCO), Nd 2 CuO 4 (NCO), and	[PDF] arxiv.org Accès Univ Paris-Saclay			
	inclure les brevets	La 2 CuO 4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they 公 Enregistrer 切 Citer Cité 5 fois Autres articles Les 12 versions				

trouver l'article

Cliquer sur le lien pdf s'il existe, sinon passez par la bibli ou des sites...

=	Google Scholar	Aeppli 2024 PRL	2
•	Articles	Environ 183 résultats (0,07 s)	
	Date indifférente Depuis 2024 Depuis 2023 Depuis 2020 Période spécifique	Clock with 8×10^{-19} Systematic Uncertainty <u>A Aeppli</u> , <u>K Kim</u> , W Warfield, <u>MS Safronova</u> , <u>J Ye</u> - Physical Review Letters, 2024 - APS We report an optical lattice clock with a total systematic uncertainty of 8.1 × 10 - 19 in fractional frequency units, representing the lowest uncertainty of any clock to date. The clock relies \Rightarrow Enregistrer \mathfrak{M} Citer Cité 7 fois Autres articles	[PDF] mariannasafronova.com Accès Univ Paris-Saclay
	Trier par pertinence Trier par date	A clock with 8×10^{-19} systematic uncertainty A Aeppli, <u>K Kim</u> , W Warfield, <u>MS Safronova</u> arXiv preprint arXiv, 2024 - arxiv.org We report an optical lattice clock with a total systematic uncertainty of \$8.1 \times 10\2-19\\$	[PDF] arxiv.org
	Toutes les langues Recherche dans les pages en Français	in fractional frequency units, representing the lowest uncertainty of any clock to date. The \swarrow Enregistrer \Im Citer Autres articles Les 2 versions \gg	
	Tous les types Articles de revue	Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens CR <u>L Martinelli, K Wohlfeld, J Pelliciari, R Arpaia</u> Physical Review Letters, 2024 - APS We have investigated the 3 d arbital excitations in CaCuO 2 (CCO). Nd 3 CuO 4 (NCO) and	[PDF] arxiv.org Accès Univ Paris-Saclay
	inclure les brevets	La 2 CuO 4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they Δ Enregistrer $\overline{32}$ Citer Cité 5 fois Autres articles Les 12 versions	

dans le journal lui-même ?

PHYSICAL R	EVIEW LETT	ERS ons Authors Refere	es Search	Press	About Edit	orial Team	٩
Featured in Physics Clock with 8 Alexander Aeppli, Kyr Free Lett	Editors' Suggestion × 10 ⁻¹⁹ System ungtae Kim, William War 23401 – Published 10 Ju nt is Boling Uncertainty in 1	iatic Uncertainty field, Marianna S. Safronova Jy 2024	a, and Jun Ye				260
Article Reference	s No Citing Articles	Supplemental Material	PDF	HTML	Export Citation		
> AB: We re frequi intern trapp we pr by pr	STRACT eport an optical lattice clock ency units, representing the ogating the ultranarrow ${}^{1}S_{0}$ ed in a vertically-oriented, reviously demonstrated rec ecise control of collisional s	with a total systematic uncert e lowest uncertainty of any closest uncertainty of any closest uncertainty of any closest of $\rightarrow {}^{3}P_{0}$ transition in a dilute ensurement of the shallow, one-dimensional optic ord high atomic coherence times that and the lattice light shift.	ainty of 8.1×10^{-19} ck to date. The clo semble of fermionic al lattice. Using im e and measurement In this work, we re	' in fractional ck relies on c strontium at laging spectro nt precision e vise the black	toms oscopy, inabled k body	lssue Vol. 133,	lss. 2 — 12 July 2024 Check for updates

dans le journal lui-même ?

nature

Explore content Y About the journal Y Publish with us Y Subscribe

nature > news & views > article

NEWS AND VIEWS 07 August 2024

Physics solves a training problem for artificial neural networks

Systems that emulate biological neural networks offer an efficient way of running AI algorithms, but they can't be trained using the conventional approach. The symmetry of these 'physical' networks provides a neat solution.

By Damien Querlioz

¥) (f) (¤

Huge changes are already under way in health care, industry and education as a result of advances in artificial intelligence (AI), but the costs could outweigh the benefits if AI's enormous energy consumption is not reined in. The problem is that AI relies heavily on deep neural networks, which are layered algorithms that involve millions or even billions of computations, requiring massive, energy-hungry access to the memories in conventional computers. One possible solution is to replace the computers with systems that more closely reflect the physical structure of biological neural networks, but such systems are typically incapable of performing one of the main steps in training the network. In a paper in *Nature*, Xue *et al.*¹ report an ingenious workaround that uses physics to overcome the problem.

Read the paper: Fully forward

mode training for optical neural networks 'Physical' neural networks can be designed using several platforms involving, for example, optics², nanoelectronics^{3,4} or mechanics⁵. These systems naturally implement the unidirectional data flow of neural networks, and their physical parameters (which could be, for example, the refractive index of an optical filter, the electrical resistance of a component, or the stiffness of a spring) represent the parameters that encode the nodes and connections of the neural network⁶. However, training these networks efficiently remains a major hurdle.

The backbone of most software for training neural networks is a method called gradient descent, which involves calculating the error associated with a neural network's output, and

Figure 1 | Training a neural network. a, Most protocols for training artificial neural networks involve calculating the error associated with the network's output, and then minimizing error by updating its 'hidden' layers through a process called backpropagation. **b**, Optical networks (for example, those using laser light moving through optical fibre) could implement machine-learning algorithms more efficiently than can conventional computers, but they have clear inputs and outputs, so backpropagation is not possible. Xue *et al.*¹ developed an alternative approach called fully forward-mode learning, based on the physical principle that light can travel in one direction through an optical system just as easily as it can in the opposite direction. This means that backpropagation can be simulated without information needing to be propagated backwards.

A leading solution to this challenge involves using a mathematical model, and not the physical system itself, to perform the calculation^Z. Others rely on emerging learning schemes that avoid backpropagation altogether[§]. However, none of these solutions can match the accuracy of neural networks implemented in conventional computers when applied to complex tasks.

Via Altmetrics :

PHYSI	CAL RE	VIEW LI	ETTERS	5												
lighlights	Recent A	ccepted C	Collections	Authors I	Referees	Search	Press	About	Editorial	Team	٣					
Featured	in Physics E	ditors' Suggestio	n													
Clock	with 8×1	10 ⁻¹⁹ Sys	stematic	Uncertai	nty											
Alexande Phys. Rev	er Aeppli, Kyung 7. Lett. 133 . 0234	tae Kim, Willia 401 – Publishe	m Warfield, M d 10 July 202	arianna S. Saf 4	ronova, and	Jun Ye					260					
Physics See Viewpoint: Reducing Uncertainty in an Optical Lattice Clock																
Article	References	No Citing A	rticles Su	pplemental Mat	terial	PDF	HTML	Export Ci	tation							
>	ABST	RACT						_	I	ssue						
ADSTRACT - We report an optical lattice clock with a total systematic uncertainty of 8.1×10^{-19} in fractional Vol. 133, lss. 2 - 12 July 2024																
frequency units, representing the lowest uncertainty of any clock to date. The clock relies on interrogating the ultranarrow ${}^{1}S_{0} \rightarrow {}^{3}P_{0}$ transition in a dilute ensemble of fermionic strontium atoms trapped in a vertically-oriented, shallow, one-dimensional optical lattice. Using imaging spectroscopy, we previously demonstrated record high atomic coherence time and measurement precision enabled by precise control of collisional shifts and the lattice light shift. In this work, we revise the black body																
									radiation shift correction by evaluating the 54d 3D. lifetime necessitating precise characterization and							

Via Altmetrics :

Via Altmetrics :

O Altmetric ? What is this page?								🗠 Share		
Clock with 8×10-1 Overview of attention for article published i	9 System	natic Und ers, July 2024	certain	ty						
	SUMMARY	News Blo	gs X	Reddit	Dimensions c	itations				
260	So far, Alt	metric has seen 33 metric has seen 33 metric has seen 33 metric Reducing Und Clock American Physical Han-Ning Dai and University of Scier	news stories from certainty in Society - Physics Yu-Ao Chen Scho ce and Technolo	m 29 outlets. an Optical L s , 29 Jul 2024 pool of Physical S pgy of China, He	.attice ciences, fei, China July	An optical lattice clock based on strontium atoms achieves unprecedented accuracy MSN, 24 Jul 2024 Researchers at the Ye Lab at JILA (the National Institute of Standards and Technology and the University of Colorado				
Output this Attention Score		29					Boulder			
In the top 5% of all research outputs scored by Altmetric	An optical lat atoms achiev	tice clock ba es unpreceo	ased on stro lented accu	ontium iracy -	An optical lattice clock based on strontium atoms achieves unprecedented accuracy					
More Mentioned by		Swift Telecast, 24	ul 2024				Phys.org, 24 Jul 2024 Researchers at the Ye Lab at JILA (the	National Institute of	f	

cherchez des contenus vulgarisés sur le domaine de l'article

Via Wikipedia (US et FR) :

= WIKIPEDIA The Free Encyclopedia

Q Search Wikipedia

From Wikipedia, the free encyclopedia

Contents hide Article Talk

(Top)

History
How atomic clocks work

> Types

Time measuring

Optical clocks Chip-scale atomic clocks

Redefining the second

Explanatory notes

mechanism

Accuracy

> Applications

See also

References

> Research

For a clock updated by radio signals, see Radio clock. For the clock as a measure for risk of catastrophic destruction, see Doomsday Clock. For other topics, see Atomic Clock (disambiguation).

Search

An **atomic clock** is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, $\Delta \nu_{\rm Cs}$, the unperturbed groundstate hyperfine transition frequency of the caesium-133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s⁻¹.

This definition is the basis for the system of International Atomic Time (TAI), which is maintained by an ensemble of atomic clocks around the world. The system of Coordinated Universal Time (UTC) that is the basis of civil time implements leap seconds to allow clock time to track changes in Earth's rotation to within one second while being based on clocks that are based on the definition of the second, though leap seconds will be phased out in 2035.^[2]

The accurate timekeeping capabilities of atomic clocks are also used for navigation by satellite networks such as the European Union's Galileo Programme and the United States' GPS

Atomic clock

文A 66 languages ~

Read Edit View history Tools ~

and Tom Heavner with the NIST-F2 caesium fountain atomic clock, a civilian time standard for the United States

classification	CIUCK
Industry	Telecommunications, science
Application	TAI, satellite navigation
Fuel source	Electricity
Powered	Yes

cherchez des contenus vulgarisés sur le domaine de l'article

Dans Wikipedia, aller voir en bas les refs et les « external links »

External links

External links [edit]

Schrödinger, Erwin (August 1952). "Are there quantum jumps? Part I" → (PDF). The British Journal for the Philosophy of Science. 3 (10): 109–123. doi:10.1093/bjps/iii.10.109 CR ▷. Part 2 →

シタタン とook up *quantum leap* えない 本部型 dictionary.

- "There are no quantum jumps, nor are there particles!" by H. D. Zeh, Physics Letters A172, 189 (1993).
- Ball, Philip (June 5, 2019). "Quantum Leaps, Long Assumed to Be Instantaneous, Take Time" ☑. Quanta Magazine. Retrieved June 6, 2019.
- "Surface plasmon at a metal-dielectric interface with an epsilon-near-zero transition layer" ⊂ by Kevin Roccapriore et al., *Physical Review B* 103, L161404 (2021).

Categories: Atomic physics | Electron states

cherchez des contenus vulgarisés sur le domaine de l'article

Via des vidéos (Youtube...) :

Vérifiez la réputation de l'orateur.trice :

(en général format long – vérifier le nom du conférencier sur internet et qu'il est d'un labo et d'une institution scientifique)

Les métamatériaux dans le domaine de l'électromagnétisme - YouTube

cherchez des contenus plus fouillés

« textbook pdf » + sujet « introduction to » + sujet « cours pdf » + sujet

Repérez ce qui s'est fait après

Via google scholar :

Déchiffrer l'article

LETTER

Single-shot compressed ultrafast photography at one hundred billion frames per second

g Gao¹⁺, Jinyang Liang¹⁺, Chiye Li¹ & Lihong V. Wang¹

nsors' wide graphy (CUP)

norse in motion³ and the 1887 photograph of a (3D) x, y, t scene is then measured by a 2D detector array.

 $I_i(x'',y'',t) = SCI(x,y,t)$ esultant encoded, si The lis

E(m,n) = OI(x,y,t)that is, O = TSC.

RESEARCH LETTER Figure 2b also shows a representative temporal frame at t = 60 ps nd G₃) along both x and y axes; ho

more, whereas the band purely limited by the optical sfer function of the system without temporal shearing— e reference image (Fig. 2c)—is enclosed by the outer and circle. The CUP resolutions along the word.

 r_{0}^{0} size an annumero exploration of your serve quark static transformation of the motion, activation of the motion activation when imaging quarks steense. Initially, it was a statistic of the motion activation of the statistic constraints on A to B faster than the light wavefront, the actual inform

intro et conclu

1. lire résumé, 2. regarder si schéma de l'expérience

3. déchiffrer les figures avec l'aide des légendes

blems in FLIN

Déchiffrer un article scientifique

- 1. le trouver via Google Scholar
- 2. chercher des news associées (altmetrics)
- 3. chercher des contenus plus vulgarisés : google, wikipedia, youtube
- 4. chercher des contenus plus fouillés
- 5. reperer ce qui s'est fait après (citations)
- 6. déchiffrer l'article : résumé → intro, conclu → figures