
local fluid to rotate, a property known as its  
vorticity.

One way to understand the connection 
between flow gradients and fluid rotation 
is to imagine a boat positioned with its bow 
facing the direction of the water flow, with 
water flowing past the boat’s right-hand side 
faster than on its left. If the boat were floating  
passively, when viewed from above, it would 
begin to rotate clockwise. The speed of this 
rotation would be proportional to the difference 
in the flow speeds on either side, which form 
a gradient across the boat. A similar informa-
tion pathway — sensing the velocity around the 
fish’s body through the lateral line, followed by 
deducing the corresponding direction of local 
vorticity and estimating the local flow-speed 
gradients, which are proportional to the vorti-
city — is at the heart of the proposed mecha-
nism for flow-based navigation in zebrafish.

Successful navigation requires a way of using 
knowledge of local flow conditions to robustly 
guide a fish away from harm. The research-
ers made a striking observation in relation to 
this. Whenever a fish swam towards a region 
in which the difference between the flow 
speeds on either side of its body increased 
in comparison to the difference at the fish’s 
previous location, the fish made a turn in the 
direction of the local flow vorticity (by veer-
ing either clockwise or anticlockwise). This 
action reliably steered the animal away from 
the region near the wall, and towards the centre 
of the oncoming flow. Conversely, when the 
fish swam towards a region in which the flow 
gradients decreased in comparison to those it 
encountered previously, it continued to swim 
in the same direction without a turning bias. 
Because flow gradients usually decrease  the 
farther away a fish is from a solid object, this 
navigation strategy should translate into the  
avoidance of real-world obstacles and  
the bodies of predators.

The authors took important first steps 
towards extending their results beyond the 
realm of controlled laboratory experiments 
by developing computer simulations that 
demonstrated the robustness of their obser-
vations when modelling the situation in 
quasi-turbulent flows. However, real aquatic 
environments present other challenges, such 
as 3D flow that cannot be navigated solely 
with turns in a horizontal plane. In addition, 
the Kelvin–Stokes theorem that underlies the 
proposed navigation strategy can fail if there 
are local sources or sinks of water in the vicin-
ity, such as the suction flow that some preda-
tors use to ingest prey4. Paradoxically, the 
proposed mechanism for rheotaxis could also 
lead fish towards regions of flow that, although 
they exhibit small flow gradients, could simul-
taneously have large, uniform flow speeds 
that overpower the fish’s ability to escape 
such strong currents. Thus, the mechanism 
described by Oteiza and colleagues is probably 
paired with other sensing strategies — yet to 

be discovered, and perhaps also making use of 
the lateral line — that enable fish to navigate 
the full complexity of the underwater world. 
As the full repertoire of these sensing and  
control skills becomes apparent, we will not 
only learn more about fish ecology, but might 
also gain inspiration for new types of bio
robotic navigation in both water and air. ■
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A P P L I E D  P H Y S I C S

A new spin on 
nanoscale computing
A nanoscale magnetic device that mimics the behaviour of neurons has been used 
to recognize audio signals. Such a device could be adapted to tackle tasks with 
greater efficiency than conventional computers. See Letter p.428

F R A N K  H O P P E N S T E A D T

Neuromorphic (brain-like) computers  
offer many advantages over con-
ventional systems, including energy 

efficiency, a high data-transfer speed and the 
ability to be trained. On page 428, Torrejon 
et al.1 report one of the first nanoscale neuro-
morphic computers to perform a classifica-
tion task — in this case, speech recognition. 
The core of the computer is a magnetic device 
called a spintronic oscillator that operates at 
gigahertz frequencies. Torrejon and colleagues’ 
work is interesting not so much because of the 
application for speech recognition, the results 

of which are similar to those of other state-of-
the-art technologies2, but because of how the 
recognition is achieved.

How does a spintronic oscillator work? The 
device has a magnetization that can be thought 
of as an arrow that points in a particular direc-
tion. This direction can be regulated by apply-
ing an electrical current to the device — a state 
known as the equilibrium configuration. When 
the device is stimulated by a second electrical 
current (the input), the arrow begins to oscillate 
in a stable way, producing an oscillating volt-
age. Crucially, the device’s response depends on 
the timing of the input. The arrow continues 
to oscillate until the input is removed, at which 

A
m

p
lit

ud
e

Time

Current Voltage

Spintronic oscillator

‘One’

Figure 1 | Spoken-digit recognition using a spintronic oscillator.  Torrejon et al.1 show that a nanoscale 
magnetic device called a spintronic oscillator can be used for speech recognition. Their oscillator 
comprises a non-magnetic material (yellow), sandwiched between two magnetic materials (blue and 
grey). Shown here is a simplified version of their approach. The authors transform an audio signal 
for the word ‘one’ into an electrical current using signal-processing methods. The current causes the 
oscillator’s magnetization (black arrow) to rotate (red arrow), producing an oscillating voltage. Torrejon 
and colleagues identify the spoken digit from this voltage using machine-learning methods, in which 
data are classified on the basis of the results of previous training. Unlike conventional electronics that 
would require a combination of several components and a larger microchip area, the authors’ spintronic 
oscillator provides functionality in a single unit. Audio signal adapted from Fig. 2a in ref. 1.
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time the device returns to equilibrium.
Spintronic oscillators have a few key proper-

ties: they are tens to hundreds of nanometres in 
size; they are nonlinear (they can exhibit sta-
ble isolated oscillations); they can be analysed 
using signal-processing methods; and they 
produce analog, rather than digital, signals. 
Spintronic oscillators also have useful capa-
bilities. For example, they can perform many 
distinct tasks simultaneously by combining 
(multiplexing) signals and they are capable of 
phase locking — a property that stabilizes the 
oscillations. The transistors used in conven-
tional computing can be as small as spintronic 
oscillators, approaching the size of a single 
atom. However, a network of transistors that 
emulates the properties of a spintronic oscil-
lator would be larger and more complex than 
the corresponding oscillator.

The approach of using oscillations for com-
putations is based on biology. Recordings of 
electrical activity in the brain show that neu-
rons transmit signals whose oscillations have 
a wide range of frequencies. Furthermore, 
biological rhythms operate on time scales 
ranging from milliseconds to months3. These 
oscillations are forms of analog information 
processing. One notable feature, which spin-
tronic oscillators share, is that the oscillations 
are remarkably stable in the presence of noise 
and other perturbations.

In the 1940s and 1950s, the mathematician 
John von Neumann proposed using micro-
wave-frequency oscillators for general-purpose  
computations4. By using one oscillation in volt-
age to represent ‘0’ and the antiphase oscilla-
tion to represent ‘1’, von Neumann showed that 
all arithmetic operations can be performed 
using simple electronic circuits called NAND 
gates. However, his proposal came immedi-
ately before the advent of transistors. Transis-
tors took over the computing world because 
they are simple in design and, with ingenious 
engineering, can be interconnected to form 
complex switching circuits that perform the 
required arithmetic operations.

In the past decade, there has been an explo-
sion in applications of artificial intelligence, 
machine learning and, in particular, ‘deep’ 
learning that require powerful computers to 
simulate massive artificial neural networks. At 
the same time, there have been concerns that 
transistors are reaching their limit in terms of 
size, functionality and cost effectiveness. New 
types of transistor and alternative technologies 
are being investigated throughout the comput-
ing industry, with the aim of producing ever-
smaller computer circuits. Some researchers 
are revisiting von Neumann’s ideas to use oscil-
lators for arithmetic computation5, whereas 
others are developing computers based on 
quantum mechanics6. Torrejon and colleagues’ 
work is the first step in a different direction 
— it suggests that spintronic oscillators could 
pave the way to building specialized chips for 
large-scale neural networks. The present era 

feels similar to that of 60 years ago, when tran-
sistors were first used to replace vacuum tubes 
in computing machines.

Torrejon et al. used an approach called  
reservoir computing, which is derived from 
studies of neural networks in the prefrontal 
cortex of primate brains7. In this approach, 
an input signal is fed into a computing system 
called a reservoir. Another computer is trained 
to read the state of the reservoir and map this 
state to the desired output.

The authors’ reservoir is a spintronic oscilla-
tor comprising a non-magnetic material sand-
wiched between two magnetic layers (Fig. 1). As 
the input signal, the authors used an audio file of 
an isolated digit (0 to 9) pronounced by one of 
five different speakers. They then transformed 
the audio signal into an electrical current using 
signal-processing methods (the pre-processing 
stage). The current drives the oscillator, produc-
ing a voltage that measures the deflection of the 
magnetization from equilibrium. Finally, the 
authors identified the spoken digit (the out-
put) from this voltage using machine-learning  
methods (the post-processing stage).

Torrejon et al. achieve digit-recognition rates 
of up to 99.6%, independent of the speaker — a 
result that is competitive with other state-of-the-
art technologies2. Currently, the pre-processing 
of inputs and the post-processing of outputs rely 
on digital computation, so the authors’ system is 
a hybrid digital–analog machine. The reservoir 
cannot be tuned during the recognition process, 
but the pre- and post-processing systems can be 
(for example, during training).

Neuromorphic computers might not 
become general-purpose computational 
machines. It is more likely that they will 

make up arrays of specialized computers that  
communicate and synchronize their activities 
— much like the brain does — but at speeds 
of gigahertz rather than hertz, and on length 
scales of nanometres rather than micrometres. 
Such computers could also be hybrids of digital 
and analog devices, thereby taking advantage 
of the strengths of both technologies.

A natural next step for the authors is to 
investigate networking of spintronic oscilla-
tors to design and build more-complex arrays 
that have greater functionality. Connections 
between such oscillators could be achieved 
using electrical or optical pathways, or through 
excitations called spin waves that propagate in 
a common magnetic medium. In addition, 
input and output processing might eventually 
reach the scale and functionality of spintronic 
oscillators. Torrejon and colleagues’ system 
is a breakthrough in terms of using oscilla-
tors for computing. The system works, and it 
holds promise for major gains in classification,  
computation, control and switching. ■
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N E U R O B I O L O G Y

Synapses get together 
for vision
A sophisticated analysis in mice of how inputs to neurons from other neurons 
are distributed across individual cells of the brain’s visual cortex provides 
information about how mammalian vision is processed. See Letter p.449

T O B I A S  R O S E  &  M A R K  H Ü B E N E R

A typical pyramidal neuron in the 
brain’s visual cortex receives thou-
sands of excitatory signals from 

other neurons, transmitted across connec-
tions called synapses. These inputs from 
presynaptic neurons end on tiny protrusions 
called spines on the postsynaptic neuron’s 
tree-like processes (dendrites). In princi-
ple, when a sufficient number of inputs are 
active at the same time, the postsynaptic 

neuron will fire. But not all inputs are equal: it  
matters where on the dendritic tree an input is 
located, and whether it is activated by similar 
stimuli to those that activate its neighbours, 
allowing simultaneously active inputs to team 
up for greater impact1. On page 449, Iacaruso 
et al.2 describe how inputs activated by stim-
uli at different locations in visual space are 
mapped onto the dendrites of neurons in the 
visual cortex.

Neurons in the visual cortex respond to 
specific attributes of visual stimuli, including 
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