

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\Psi = i\hbar\frac{\partial}{\partial t}\Psi$$

Here is the equation; the goal is to find PSI

the equation tells us about the shape of PSI and how it eyolyes in time $\hbar = 1.054571628$ $\times 10^{-34}$ y sec

H bar is a constant equal to this number

the Laplacian is linked to the curvature of PSI

m represents the mass of a quantum object; 2m is just twice the mass

i is a complex number lt's complicated ...

 $\frac{\partial}{\partial t}$

this derivative is linked to the time variation of PSI

V represents potentials; for example if the object;

feels a force

feels electricity or not

feels gravity

WITH THIS EQUATION,
PHYSICISTS ARE ABLE
TO PREDICT VERY WEIRD BEHAVIORS

ORS

a quantum object is allowed to have only quantized energies

a quantum object can be in two states at a time

a quantum object can be a particle or a waye

this equation allowed us to understand why objects are solid, due to the nature of atoms

invent the transistor, and thus almost all electronic devices

invent the laser and LEDs

create molecules for medicine

but more importantly, this is what won him the Nobel prize in 1933

