

WHAT GRAPH;

WHAT GRAPH?

Resistance

Resistance VS

Resistance VS Temperature

Resistance VS Temperature
In

Resistance VS Temperature In a

Resistance VS Temperature In a superconductor

Resistance VS Temperature In a superconductor

Resistance VS Temperature In a superconductor

Resistance In a superc

Kamerlingh

Kamerlingh Onnes

Kamerlingh Onnes Nobel Price

Kamerlingh Onnes Nobel Price 1913

Kamerlingh Onnes Nobel Price 1913

Kamerlingh Onnes Nobel Price 1913

Kamerlingh Onnes

Nobel Price 1913

Kamerlingh Onl

Nobel Price

1913

Kamerling

1913

bel

Kamer

1913

Price

impracticable to reverse the auxiliary current as is usually done in the compensation method. The resistance of the mercury thread was then obtained from the differences between the deflections of the galvanometer placed in circuit with Hg_2 and Hg_3 and the compensating electromotive force, when the main current passing through the resistance was reversed. The galvanometer was calibrated for this purpose.

In the accompanying figure is given a graphical representation of the resistances observed 1).

¹⁾ For the resistance of the solid mercury at 0° C. extrapolated from the melting point nearly 60 Ohm can be accepted. In the solidifying process differences occur which make necessary special measurements to be able to give the exact proportion of the resistance of the wire at helium temperatures to that at 0° C. (solid extrapolated from the melting point). Therefore the resistances themselves are given here. Note added in the translation].

impracticable to reverse the auxiliary current as is usually done in the compensation method. The resistance of the mercury thread was then obtained from the differences between the deflections of the galvanometer placed in circuit with Hg_2 and Hg_3 and the compensating electromotive force, when the main current passing through the resistance was reversed. The galvanometer was calibrated for this purpose.

In the accompanying figure is given a graphical representation of the resistances observed 1).

¹⁾ For the resistance of the solid mercury at 0° C. extrapolated from the melting point nearly 60 Ohm can be accepted. In the solidifying process differences occur which make necessary special measurements to be able to give the exact proportion of the resistance of the wire at helium temperatures to that at 0° C. (solid extrapolated from the melting point). Therefore the resistances themselves are given here. Note added in the translation].

impracticable to reverse the auxiliary current as is usually done in the compensation method. The resistance of the mercury thread was then obtained from the differences between the deflections of the galvanometer placed in circuit with Hg_2 and Hg_3 and the compensating electromotive force, when the main current passing through the resistance was reversed. The galvanometer was calibrated for this purpose.

In the accompanying figure is given a graphical representation of the resistances observed 1).

¹⁾ For the resistance of the solid mercury at 0° C. extrapolated from the melting point nearly 60 Ohm can be accepted. In the solidifying process differences occur which make necessary special measurements to be able to give the exact proportion of the resistance of the wire at helium temperatures to that at 0° C. (solid extrapolated from the melting point). Therefore the resistances themselves are given here. Note added in the translation].

R

R

R

impracticable to reverse the auxiliary current as is usually done in the compensation method. The resistance of the mercury thread was then obtained from the differences between the deflections of the galvanometer placed in circuit with Hg_2 and Hg_3 and the compensating electromotive force, when the main current passing through the resistance was reversed. The galvanometer was calibrated for this purpose.

In the accompanying figure is given a graphical representation of the resistances observed 1).

¹⁾ For the resistance of the solid mercury at 0° C. extrapolated from the melting point nearly 60 Ohm can be accepted. In the solidifying process differences occur which make necessary special measurements to be able to give the exact proportion of the resistance of the wire at helium temperatures to that at 0° C. (solid extrapolated from the melting point). Therefore the resistances themselves are given here. Note added in the translation].

impracticable to reverse the auxiliary current as is usually done in the compensation method. The resistance of the mercury thread was then obtained from the differences between the deflections of the galvanometer placed in circuit with Hg_2 and Hg_3 and the compensating electromotive force, when the main current passing through the resistance was reversed. The galvanometer was calibrated for this purpose.

In the accompanying figure is given a graphical representation of the resistances observed 1).

¹⁾ For the resistance of the solid mercury at 0° C. extrapolated from the melting point nearly 60 Ohm can be accepted. In the solidifying process differences occur which make necessary special measurements to be able to give the exact proportion of the resistance of the wire at helium temperatures to that at 0° C. (solid extrapolated from the melting point). Therefore the resistances themselves are given here. Note added in the translation].

impracticable to reverse the auxiliary current as is usually done in the compensation method. The resistance of the mercury thread was then obtained from the differences between the deflections of the galvanometer placed in circuit with Hg_2 and Hg_3 and the compensating electromotive force, when the main current passing through the resistance was reversed. The galvanometer was calibrated for this purpose.

In the accompanying figure is given a graphical representation of the resistances observed 1).

¹⁾ For the resistance of the solid mercury at 0° C. extrapolated from the melting point nearly 60 Ohm can be accepted. In the solidifying process differences occur which make necessary special measurements to be able to give the exact proportion of the resistance of the wire at helium temperatures to that at 0° C. (solid extrapolated from the melting point). Therefore the resistances themselves are given here. Note added in the translation].

Chloé Chloé PASSAVANT PASSAVANT

Chloé Chloé PASSAVANT PASSAVANT

DSAA

Chloé Chloé PASSAVANT PASSAVANT

DSAA D

Chloé Chloé PASSAVANT PASSAVANT

DSAA DI

Chloé Chloé PASSAVANT PASSAVANT

DSAA DIS

Chloé Chloé PASSAVANT PASSAVANT

DSAA DIS Ecole

Chloé Chloé PASSAVANT PASSAVANT

Chloé Chloé PASSAVANT PASSAVANT

Chloé Chloé PASSAVANT PASSAVANT

DSAA DIS Ecole Estienne

Chloé Chloé PASSAVANT PASSAVANT

Chloé Chloé PASSAVANT PASSAVANT

APHISM

Chloé PASSAVAN PASSAVAN

HISM

chloé PASSAV

ISM

chloé PASS

DIS Estienne

ch! PA

ienne

PHYSICS

Julien Bobroff

Julien Bobroff

Frederic

Frederic BouqueT

Frederic BouqueT

Julien BOBROFF Frederic BOUQUET

La

Julien BOBROFF Frederic BOUQUET

La Physique

Julien BOBROFF Frederic BOUQUET

La Physique Autrement

Julien BOBROFF
Frederic BOUQUET

La Physique Autrement

Laboratoire

Julien BOBROFF Frederic BOUQUET

La Physique Autrement

Laboratoire de

Julien BOBRUTT Frederic BOUQUET

La Physique Autrement
Laboratoire de Physique

Julien BOBRUTT Frederic BOUQUET

La Physique Autrement
Laboratoire de Physique des

Julien BOBRUTT Frederic BOUQUET

La Physique Autrement
Laboratoire de Physique des Solides

Frederic Bouquet

La Physique Autrement Laboratoire de Physique des Solides

Frederic Bouquet

La Physique Autrement

Laboratoire de Physique des Solides

Frederic Bouquet

La Physique Autrement

Laboratoire de Physique des Solides

Frederic Bouquet

La Physique Autrement

Laboratoire de Physique des Solides

Frederic Bouquet

La Physique Autrement

Laboratoire de Physique des Solides Université Paris-Sud, CNRS

Frederic Bouquet

La Physique Autrement

Laboratoire de Physique des Solides Université Paris-Sud, CNRS

Julien BOBROFF Frederic BOUQUE Frederic

a Physique Autrement

aboratoire de Physique des Solides Iniversité Paris-Sud, CNRS

Julien BOBROI Frederic BOUO

hysique Autrement

toire de Physique des Solides sité Paris-Sud, CNRS

Julien BOBR Frederic BO

ique Autrement

de Physique des Solides Paris-Sud, CNRS

Julien BC Frederic

Autrement

sique des Solides d, CNRS

Julien Freder

ement

es Solides

Juli

t les

WWW.VULGARISATION

