This project was imagined by Frédéric Bouquet (Paris-Saclay University) and Giovanni Organtini (Sapienza Università di Roma, Italy).

Physics: Frédéric Bouquet, Giovanni Organtini, Julien Bobroff

Videos, photos, gifs: Amel Kolli

Graphic design and illustrations: Anna Khazina

This project is a production of «Physics Reimagined» from Paris-Saclay University and CNRS. It benefited from the support of the IDEX Paris-Saclay and of the «Physique Autrement» Chair, held by the Paris-Sud Foundation and supported by the Air Liquide Group.

Challenge GIANT PENDULUM

Get inspired by Galileo and measure the height of a building... using a smartphone!

Discover The Smartphone Physics Challenge at VULGARISATION.FR

«Physics Reimagined» team (Paris-Saclay University)

To assemble the booklet:

Print on two A4 sheets using both sides (select short-edge binding), then assemble the booklet by folding the sheets in two.

To do measurements with your smartphone:

Install Phyphox app on your phone. This app is developed by Aachen University, it's free and open-source, translated in English and available for Android and iOS. Phyphox allows to conduct measurements using your smartphone built-in sensors.

QQQQQ

Precision: high

Difficulty: intermediate

Nº17. Giant Pendulum with Sound

Formula

Material

1 long rope

1 bluetooth speaker

aker 1 smartphone

Make a giant pendulum the size of the building. Attach the speaker to the pendulum, and send a constant sound. Position the smartphone vertically, and use the variation in the amplitude of the recorded sound to determine the period.

T = pendulum period, g = 9.8 ms⁻²

The pendulum must not rotate in all directions, it must only swing.

Difficulty: intermediate

Nº15. Giant Pendulum & Light

Formula

$H = g\left(\frac{T}{2\pi}\right)^2$

Material

1 mass

1 long rope

1 smartphone

Make a giant pendulum the size of the building. Position the smartphone vertically to detect the shadow of the pendulum.

T = pendulum period, $a = 9.8 \text{ ms}^{-2}$

The pendulum must not rotate in all directions, it must only swing.

Difficulty: intermediate

Nº10. Giant **Pendulum Timed**

Formula

 $H = 3\left(\frac{T}{2\pi}\right)^2$

1 long rope

1 smartphone

Make a giant pendulum the size of the building. Use the smartphone timer to determine the period.

T = pendulum period, $a = 9.8 \text{ ms}^{-2}$

The pendulum must not rotate in all directions, it must only swing.

Nº12. Giant Pendulum & Accelerometer

Formula

 $H = 3\left(\frac{L}{2u}\right)_{5}$

Material

Sensor: accelerometer

1 long rope 1 smartphone

Make a giant pendulum the size of the building. Attach the smartphone to the pendulum, and use the accelerometer to determine the period.

T = pendulum period, g = 9.8 ms⁻²

Difficulty: intermediate

Nº14. Giant Pendulum & Magnet

Formula

 $H = 3\left(\frac{L}{2u}\right)^2$

Material

1 long rope

1 magnet

1 smartphone

Make a giant pendulum the size of the building. Attach a magnet to the pendulum. Position the smartphone vertically to detect the passage of the magnet.

T = pendulum period, g = 9.8 ms^{-2}

The Earth's magnetic field can be used in place of the magnet; the smartphone must then be fixed on the pendulum.