

 $\times 10^{22} =$

DIAMOND IS COMPOSED OF A MULTITUDE OF CARBON ATOMS, LINKED BY COVALENT BONDS. THIS BOND IS REALLY STRONG. AS A RESULT, DIAMOND IS A VERY STRONG MATERIAL.

W I	
PHYSICS REIMAGINED, CNRS, UNIVERSITÉ PARIS-SUD - ILLUSTRATIONS : COLINE AUBERT - WWW.PHYSICSREIMAGINED.COM	
COLINE AUBERT	
ILLUSTRATIONS : C	
RSITÉ PARIS-SUD	
AGINED, CNRS, UNIVEF	
PHYSICS REIM	

ICE IS COMPOSED OF A MULTITUDE OF WATER MOLECULES, LINKED BY HYDROGEN BONDS. THIS BOND IS QUITE FRAGILE, SO ICE ONLY FORMS BELOW O'C, WHEN MOLECULES MOVE SLOWLY.

				•••••
•••••	 	 	 	
•••••	 	 	 	
••••	 	 	 	

 $\times 10^{22} =$

METAL IS COMPOSED OF A MULTITUDE OF ATOMS WHICH RELEASE ONE OF THEIR ELECTRONS TO FORM A "BAND". THIS METALLIC BAND GIVES ITS STRENGTH AND ITS ELECTRIC PROPERTIES TO THE MATERIAL.

1		
ш		
		:
		•
		1
		:
		:
		:
		:
		:
		:
		:
		•
		:
		:
		:
		:
		4
	•••••	
	• • • • • • • • • • • • • • • • • • • •	
П		
П		
П		
П		
П		
П	•••••	
П		
П		
П		

 $\times 10^{22} =$

SALT IS COMPOSED OF A MULTITUDE OF CHLORINE ATOMS AND SODIUM ATOMS, LINKED WITH EACH OTHER BY IONIC BONDS.

	:
	i
•••••	•••••

TWO CARBON ATOMS

SHARE

ONE OF THEIR ELECTRONS

TOGETHER

THIS CREATES

A COVALENT BOND

CARBON ATOMS WANT TO GAIN ELECTRONS: THEREFORE, THEY SHARE ONE OF THEIR ELECTRONS. THIS IS A COVALENT BOND, WHICH IS REALLY STRONG.

	· · · · · · · · · · · · · · · · · · ·
	:
	:
	:
	:
	i
•••••	
•••••	
•••••	

TWO WATER MOLECULES

ATTACH WITH EACH OTHER

BECAUSE THEY ARE

THIS CREATES

A HYDROGEN BOND

WATER MOLECULES ARE POLARIZED. POSITIVE AND NEGATIVE CHARGES ATTRACT EACH OTHER. THIS IS A HYDROGEN BOND, BUT IT'S QUITE FRAGILE.

	:
	:
	i
•••••	•••••
•••••	

ONE SODIUM ATOM

GIVE ONE OF ITS ELECTRONS

TO A NEIGHBORING

CHLORINE ATOM

THIS CREATES

AN IONIC BOND

SODIUM GIVES ITS ELECTRON TO CHLORINE BECAUSE IT WANTS TO LOOSE ONE WHILE CHLORINE WANTS TO GAIN ONE. THIS CREATES AN IONIC BOND.

	:
••••••	
•••••	
•••••	

SOME LITHIUM ATOMS

GIVE AWAY

ONE OF THEIR ELECTRONS

WHICH DELOCALISES

THIS CREATES

A METALLIC BOND

SOME ATOMS CAN GIVE AWAY ONE OF THEIR ELECTRONS, WHICH IS THEN SHARED BETWEEN ALL THE ATOMS: THIS CREATES A METALLIC BOND. THIS BOND IS REALLY STRONG AND ALLOWS ELECTRICITY TO CONDUCT.

:

EACH TIME YOU MOVE ONE STEP FORWARD IN THE PERIODIC TABLE OF ELEMENTS, THE ATOM HAS ONE MORE ELECTRON. HERE:THE SHAPE OF THE LAST ADDED ELECTRON IS SHOWN.

	:
	:
	:
	:
	:
	:
	:
	:
	:
	1
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	

$$-\frac{h^2}{2m} \nabla^2 \psi - \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r} \psi = E\psi(r)$$

$$\psi(r) = \psi(r, \theta, \phi)$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla^2 = \frac{1}{r^2} \frac{\partial^2}{\partial r} (r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} (sin\theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

$$-\frac{h^{2}}{2m_{e}}\frac{1}{r^{2}sin\theta}\left[\frac{1}{r^{2}}\frac{\partial^{2}}{\partial r}\left(r^{2}\frac{\partial\psi}{\partial r}\right)+\frac{1}{r^{2}sin\theta}\frac{\partial}{\partial\theta}\left(sin\theta\frac{\partial\psi}{\partial\theta}\right)+\frac{1}{r^{2}sin^{2}\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}}\right]\\-\frac{1}{4\pi\varepsilon_{0}}\frac{e^{2}}{r}\psi=E\psi$$

$$4\pi arepsilon_0 r$$

$$\psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r).Y_{l,m_l}(\theta,\phi)$$

THIS COMPUTATION RESULTS IN THE DETERMINATION OF A WAVE FUNCTION, WHICH CORRESPONDS TO ALL THE POSSIBLE SHAPES OF THE ELECTRONS IN THE ATOMS.
